小编为你精心整理了19篇《初三人教版二次函数的教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《初三人教版二次函数的教学设计》相关的范文。
篇一:二次函数教学设计教材分析
本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。
实验研究:
作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:
(一)、利用二次函数解决实际问题的易错点:
①题意不清,信息处理不当。
②选用哪种函数模型解题,判断不清。
③忽视取值范围的确定,忽视图象的正确画法。
④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。
(二)、解决问题的突破点:
①反复读题,理解清楚题意,对模糊的信息要反复比较。
②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。
④注意检验,养成良好的解题习惯。
因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。
教学目标
1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。
2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。
3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。
教学重点与难点
教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。
教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。
学生学情分析
我所代班级的学生是高一新生, 他们在初中已学过二次函数的简单性质与图像,知道二次函数在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。
教法分析
根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。
教学过程
(一)复习旧知
回忆二次函数的图像与性质:
1. 图像:
2. 定义域:
3. 单调性:
4. 最值:
【设计意图】复习旧知,引入新课。
(二)自主探究
探究1:定轴定区间最值问题
分别在下列范围内求函数f(x)=x2-2x-3的最值:
规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。
【设计意图】
通过探究
1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。
(三)合作探究(含参二次函数最值求解问题 )
探究2:动轴定区间最值问题
求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【设计意图】
通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。
变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【设计意图】
通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。
规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,
注意做到“不重不漏”。
探究3:定轴动区间最值问题
求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。
变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【设计意图】
通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。
规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。
(四)知识小结
本节课研究了二次函数的三类最值问题:
(1) 定轴定区间最值问题; (2) 动轴定区间最值问题; (3) 定轴动区间最值 ……此处隐藏30750个字……>例2:用配方法求出抛物线=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线=-3x2。
学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。
4.教师归纳点评:
(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: =ax2+bx+c————→=a(x+b2a)2+4ac-b24a
(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。
(3)抛物线的平移抓住关键点顶点的移动。
5.综合应用。
例3:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线=ax2相交于B、C两点,已知B点坐标为(1,1)。
(1)求直线和抛物线的解析式;
(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。
6. 强化练习:
(1)抛物线=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线=x2-2x+1,求:b与c的值。
(2)通过配方,求抛物线=12x2-4x+5的开口方向、对称轴及顶点坐标再画出图象。
(3)函数=ax2(a≠0)与直线=2x-3交于点A(1,b),求:
a和b的值
抛物线=ax2的顶点和对称轴;
x取何值时,二次函数=ax2中的随x的增大而增大,
求抛物线与直线=-2两交点及抛物线的顶点所构成的三角形面积。
二、课堂小结
1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。
三、作业:
填空。
1.若二次函数=(+1)x2+2-2-3的图象经过原点,则=______。
2.函数=3x2与直线=x+3的交点为(2,b),则=______,b=______。
3.抛物线=-13(x-1)2+2可以由抛物线=-13x2向______方向平移______个单位,再向______方向平移______个单位得到。
4.用配方法把=-12x2+x-52化为=a(x-h)2+的形式为=_____,其开口方向______,对称轴为______,顶点坐标为______。
篇十九:九年级数学二次函数教学设计教学目标:
1、会用待定系数法求二次函数的解析式,
2、能结合二次函数的图象掌握二次函数的.性质,
3、能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:
一、结合例题,强化练习,梳理知识点
1、用待定系数法确定二次函数解析式.
例1:根据下列条件,求出二次函数的解析式。
(1)抛物线=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数=ax2+bx+c的图象经过一次函数=-3/2x+3的图象与x轴、轴的交点;且过(1,1),求这个二次函数解析式,并把它化为=a(x-h)2+的形式。
学生活动:学生讨论,四个小题应选择什么样的函数解析式?并让学生阐述解题方法。分组完成,点评解题要点。
教师归纳:二次函数解析式常用的有三种形式:
(1)一般式:=ax2+bx+c (a≠0)
(2)顶点式:=a(x-h)2+ (a≠0)
(3)两根式:=a(x-x1)(x-x2) (a≠0)
2、强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与轴交点纵坐标为。
(1)若为定值,求此二次函数的解析式;
(2)若二次函数的图象与x轴还有异于点A的另一个交点,求的取值范围。
二、综合练习
1、出示例2:如图,抛物线=ax2+bx+c过点A(-1,0),且经过直线=x-3与坐标轴的两个交点B、C。
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标,
(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。
学生活动:学生小组讨论交流。
教师归纳:
2、 强化练习;已知二次函数=2x2-(+1)x+-1。
(1)求证不论为何值,函数图象与x轴总有交点,并指出为何值时,只有一个交点。
(2)当为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。
(3)若函数图象的顶点在第四象限,求的取值范围。
三、课堂小结
同位同学相互说说二次函数有哪些性质
归纳二次函数三种解析式的实际应用。
四、作业:
一、填空。
1. 如果一条抛物线的形状与=-13x2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。
2.已知抛物线=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=______。
二、选择。
1.如图(1),二次函数=ax2+bx+c图象如图所示,则下列结论成立的是( )
A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc>0
2.已知二次函数=ax2+bx+c图象如图(2)所示,那么函数解析式为( )
A.=-x2+2x+3 B. =x2-2x-3
C.=-x2-2x+3 D. =-x2-2x-3
3.若二次函数=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( )
A.a+c B. a-c C.-c D. c
4.已知二次函数=ax2+bx+c图象如图(3)所示,下列结论中: ①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是( )
A.4个 B.3个 C. 2个 D.1个
三、解答题。
已知抛物线=x2-(2-1)x+2--2。
(1)证明抛物线与x轴有两个不相同的交点,
(2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与轴的交点的纵坐标c(用含的代数式表示)
(3)设△ABC的面积为6,且A、B两点在轴的同侧,求抛物线的解析式。
文档为doc格式